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Abstract. We present a generalization of the multiplicative model for velocity increments involving an
affine process. The consequences on the shape of the probability distribution functions for the velocity
increments are explored, and shown to be better compatible with the existence of a scale variation of the
skewness.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 11.30.-j Symmetry and conser-
vation laws – 47.27.Gs Isotropic turbulence; homogeneous turbulence – 47.27.Jv High-Reynolds-number
turbulence

1 Introduction

Turbulent flows generally involve statistical variations
over a wide range of scales. Because of the scale invari-
ance of the Navier-Stokes equations in the limit of large
Reynolds number [9], the description of this scale varia-
tion is often done via a multiplicative process, coupling
the different scales. An elegant consequence of this hy-
pothesis was recently formulated by Castaing and collab-
orators [3–5,8], who described the evolution of the velocity
increments distribution in term of a propagator. The prob-
ability distribution of the velocity increments δu at scale
` is then linked to the probability distribution at another
scale `′ via:

P (δu, `) =
∫
G``′(a)P

(
δu

a

)
da
a
, (1)

where G``′ is the propagator from the scale ` to the scale
`′. The problem with this formulation is that it “conserves
the skewness”- in other words, the integral

∫∞
0
P (δu, `) re-

mains constant with scale if P obeys (1). This property
is not observed in real turbulence data, where the proba-
bility distributions changes from a nearly symmetric dis-
tribution at large scale towards a skewed distribution at
very small scales. This led people to postulate that the
formulation (1) is valid only for the symmetrical part of
the distribution.

This shows that turbulence is probably not a pure
multiplicative process, at least for longitudinal velocity
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increments1. Actually, a recent investigation of Friedrich
et al. [1,2] shows that the turbulence is better described by
a Langevin process involving both a multiplicative noise,
and an additive noise. In other words, to go from one veloc-
ity increments at one scale to another velocity increments
at another scale, one should perform a multiplication and
a translation, i.e. an affine transformation. The goal of
this note is to investigate the possible generalization of
the Castaing formulation if the turbulence is generated
by an affine process, and to see whether this simple gen-
eralization allows for some skewness generation along the
scale, as observed in turbulence.

2 Affine generalization of Castaing’s formula

2.1 Formulation

Consider two velocity increments at scale ` and scale `′,
and let us assume that there is a statistical affine connec-
tion between them, under the form:

δu`′ = a`′`δu` − b`′`, (2)

where a`′`′ ≥ 0 and b`′` are two random variables which
can be correlated. Note that if b is identically zero, we find
the usual multiplicative model for velocity increments. If a
is identically 1, we find an additive model for the velocity
increments, which was proposed e.g. in the case of 2D

1 Transverse velocity increments distributions are symmetric
and could therefore be described by (1).
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turbulence by [10]. In terms of the probability distribution
function, this hypothesis can also be written:

P (δu, `) =
∫ ∫

P

(
δu− b
a

, `′
)
F``′ (a, b)

da
a

db, (3)

where F``′ is the joint probability of the multicative and
additive variable. It is now our propagator to go from scale
` to scale `′ and is, as a joint probability, uniquely defined.
Note that the representation (3) is reminiscent of multi-
resolution transformations. The practical inversion prob-
lem, that is finding F from experimentally given P (δu, `)
and P (δu, `′) is a non-trivial optimization problem under
certain constrains (like the positivity of F , or the value of
its integral), which would be worth studying from a math-
ematical point of view. Leaving this interesting question
for further study, we now investigate the properties of this
generalized representation.

2.2 Group structure

If the formulation (3) has any physical ground, it should
possess a group structure: going from one scale ` to scale
`′ and then from scale `′ to scale `′′ should be equivalent
to going from scale ` to scale `′′. This requirement im-
poses a composition law condition over the function F ,
namely, that:

F``′′(a′, b′) =
∫ ∫

F``′(a, b)F`′`′′
(
a′

a
,
b′ − b
a

)
dadb. (4)

In the case where F is independent of b (multiplica-
tive case), we find the usual convolution property in
log-variable, which has been established by Castaing [5].
Formula (4) can therefore be seen as a sort of stability
property by a generalized convolution. In the multiplica-
tive case, it is well known that the stability condition se-
lects one general class of probability distribution, namely
the log-infinitely divisible distributions (see e.g. [8]). In
the present case, we have a generalization of this result,
which we call infinite affine divisibility.

2.3 Infinite “affine” divisibility

2.3.1 Matrix formulation

To define this condition of infinite “affine” divisibility, it
is convenient to consider the constraint imposed by (3) on
the moments of the probability distribution. Multiplying
both sides of (3) by (δu)n and taking the integral with
respect to δu, we get the following moment relation:

〈(δu`)n〉 =
n∑
p=0

Cpn

∫
δupP (δu, `′)dδu

∫ ∫
apbn−pF``′(a, b)dadb,

(5)

where Cpn is the usual combinatorial coefficient appear-
ing in the development of (a + b)n. This relation can be
put into an elegant matrix formulation by introducing the
“moment vector” at scale `:

X` =


1
〈δu`〉
...

1
n!〈(δu`)n〉

. . .

 (6)

and the propagator matrix A``′ , made of components
whose expression at the nth line and pth column is:

Anp``′ =
1

(n− p)!

∫ ∫
apbn−pF``′(a, b)dadb. (7)

The moment relation then takes the very simple matrix
shape

X` = A``′X
′
`. (8)

Now, we can obtain our infinite divisible property by as-
suming that for any ` and `′, we can build a sequence of
scales `0,...,`N going from ` = `0 to `N = `′ for which
the matrix A`i`i+1 tends to to a universal matrix A, which
is scale independent. The number of steps N``′ required
to go from ` to `′ in this universal sequence is called the
depth of the cascade. The elementary step required to go
from one scale of the sequence to the next is called the
step of the cascade. In standard log-infinite divisible dis-
tributions, the step tends to zero, and N``′ is proportional
to ln(`/`′); in turbulence, the step appears to be finite
and scale dependent (of the order of ln(1 + `0/`) where `0
is of the order of the Kolmogorov scale [11]). As a con-
sequence, N does not vary like in the true log-infinitely
divisible case, but rather obeys N``′ ∼ 1− (`/`′)µ, where
µ tends to zero as the Reynolds number increases [3,5,8].
This variation can be predicted from symmetry argument,
by taking into account the finiteness of N induced by the
finiteness of the step of the cascade [12,13].

In any case, whatever the shape of the function N``′ ,
we can now simply relate the moment vector at any given
scale -say the largest one, L, to the vector moment at scale
` via:

X` = AN`LXL, (9)

where A is the “elementary” matrix. This relation gen-
eralizes the log-infinite divisible property because in the
case where b, the additive parameter is zero, F (a, b) =
G(a)δ(b), and one can easily check that A``′ is diagonal.
The relation (9) then simply become:

〈(δu`)n〉 = aN`Ln 〈(δuL)n〉, (10)

where an is the nth diagonal component. This is exactly
the relation found in [8].

2.3.2 Matrix property

The affine infinite divisibility shows that all the proper-
ties of scale variations of the moments are determined by



B. Dubrulle: Affine turbulence 3

the function N`L, and by the elementary matrix A. This
matrix has some interesting properties, which we explore
now. First, by definition, A has has non-zero components
only on and below its diagonal: it is a triangular matrix.
So, we can write it as:

A =



A00 0 0 0 . . .

A10 A01 0 0 . . .

A20 A11 A02 0 . . .

A30 A21 A12 A03 . . .

. . . . . . . . . . . . . . .


. (11)

The normalization of the probability distribution F im-
poses A00 = 1. In homogeneous turbulence 〈δu`〉 = 0 at
any scale. This imposes A10 = 0. Now, it is easy to find the
expression of AN`L by an iterative procedure. One finds:

AN`L =


1 0 0 . . .

0 AN01 0 . . .

A20
1−AN02
1−A02

A11
AN01−AN02
A01−A02

AN02 . . .

. . . . . . . . . . . .

 . (12)

It is easy to show that the nth diagonal component of
AN is AN0n. As mentioned earlier, this is the “log-infinite
divisibility” remnant.

2.4 Skewness

We can now check that this new formulation allows for
skewness generation along the scales, as observed in tur-
bulence. For this, we can decompose the propagator F into
its odd and even parts, via:

S(F``′) =
1
2

(F``′(a, b) + F``′(a,−b)) ,

I(F``′) =
1
2

(F``′(a, b)− F``′(a,−b)) . (13)

In the matrix A, this decomposition corresponds a matrix
with diagonal bands alternating with zero diagonal bands.
For S, you keep the main diagonal of AN , then the second
next, the fourth next etc. For I, the main diagonal is zero,
and you keep the next, the third next, the fifth next etc.
Now, I can write a formula analog to (3) for the odd and
the even part of the distribution function of the velocity
increments which can be symbolically written:

S (P, `) =
∫ ∫

(S(P, `′)S(F``′) + I(P, `′)I(F``′)) ,

I (P, `) =
∫ ∫

(S(P, `′)I(F``′) + S(P, `′)I(F``′)) , (14)

where the two integrals are performed over a and b, and
the general convolution between S(P ) and S(F ) etc is
implicitly assumed. This formula shows that even start-
ing from an initial distribution with no skewness I(P ) =

0, S(P ) = P at scale L, one can generate skewness via
the odd part of the propagator. If log-infinitely divisibil-
ity holds, like in Castaing formulation, this odd part is
zero, and we find again the result that no skewness can be
generated.

3 Discussion

We have proposed a generalization of Castaing formu-
lation of log-infinitely divisibility for the velocity incre-
ments, which is potentially in better agreement with ob-
servations, because it allows for skewness generation along
the scale. The new propagator that we introduced is now
a joint probability distribution, and it would be very in-
teresting to study experimentally is property, to see if the
new formulation can help getting a better understanding
about the scale variation of the statistics. The main prob-
lem is of course to get practical access to this propagator,
but due to its shape, it is likely that it could be obtained
via a wavelet analysis of the type already performed by
Arneodo and its collaborators (see e.g. [6,7]).

The new formulation put emphasis on a new possible
affine symmetry for the velocity increments, generalizing
the multiplicative structure often assumed. It is interest-
ing to stress that it lay in between two extreme statistical
structure which have already been proposed for the veloc-
ity increments in the past: one is the additive structure,
leading naturally to stable laws statistics, which has been
proposed e.g. by Min et al. [10] in the case of 2D tur-
bulence. This structure is related to the natural additive
nature of velocity increments in homogeneous turbulence,
since

δu2` = u(x+ 2`)− u(x)
= u(x+ 2`)− u(x+ `) + u(x+ `)− u(x),
= δu` + δu`. (15)

The second its the multiplicative structure, which was
proposed in the case of 3D turbulence, to take into ac-
count the notion of cascade from scale to scale. These two
structures are obviously complementary, since at short dis-
tances, the velocity increments are correlated and cannot
be described with the additive structure. In the Langevin
formulation of Friedrich et al. [1,2], the multiplicative
and additive structure corresponds respectively to a mul-
tiplicative and an additive noise, which are correlated.
We have actually shown elsewhere, that the multiplicative
contribution can be viewed as stemming from the interac-
tion with the large scale velocity field (the cascade would
then comes stretching by large scales), while the addi-
tive contribution comes from pressure contribution [14].
It would be interesting to fit this findings into new phe-
nomenological models of turbulence, to help building bet-
ter closure models.

This work was initiated by a remark by B. Andreotti about
the importance of the skewness in turbulence.
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